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AHEAD 2020

Optimize science output from next generation X-ray observatories
(Athena, XRISM, LEM, Arcus, HUBS, eROSITA, eXTP, Einstein Probe, HERMES, etc) by
designing and developing appropriate tools for the new capabilities offered by those missions,
and support the community for best data exploitation.

* XRISM and Athena/X-IFU micro-calorimeters will provide in the next decades spectra with
unprecedented energy resolution in the X-ray band. Furthermore, X-IFU will be the first X-ray
integral field instrument with a number of pixels similar to current optical/NIR IFU

* eROSITA and Athena/WFI are and will revolutionize the field of X-ray surveys, opening new
large discovery spaces on this field.

* Einstein Probe and eXTP are/will give(ing) access to unprecedented timing of galactic and
extragalactic sources

* SVOM, HERMES, and many others will join the multi-messenger revolution



@ Tasks/Tools/Models
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* Advanced background modelling (INAF)
* Instrument effective-area cross calibrations (UTurku, INAF)
* Machine learning techniques for micro-calorimeter data-reduction (IFCA)

* Multi-dimensional source detection, Bayesian source detection, automatic redshift determination
(NOA, IFCA)

* Extraction and identification of line features from high-res. spectra (INAF)
* Physical Models for high resolution spectral/timing (INAF, UVA, SRON)

* Hyperspectral imaging and fitting & advanced analysis of extended sources (INAF, UniTorV,
UniRM3)

* Blind source separation/reconstruction in extended sources (CEA)
* Lobster-eye advanced triggering processes (ULEIC)



@ Advanced Tools for Data Analysis:

AHEAD 2020 impaCt

* Six post doc funded with AHEAD2020 support

* So far >50 publications produced exploiting AHEAD2020 support, involving
>200 scientists

* First workshop on inputs from the community Feb 21st 2022:
http://ahead2020-advanced-da.oats.inaf.it; emphasis on:

ﬁ%\faa\t)nced tools for transient-triggering and temporal study (e.g. STATIX,

Bayesan models for the analysis of cluster of galaxies (INAF)

3D (Imaging — X,Y — Energy, E) analysis of extended sources through
Morphological Component Analysis (CEA)

Physical models for high resolution spectroscopy in view of XRISM and
Athena (e.g. TEPID - INAF - TPHOT — SRON)


http://ahead2020-advanced-da.oats.inaf.it/

@ Advanced Tools for Data Analysis:

rmeabooon  Time-Evolving Photoionization Models

* Time-Evolving-Photoionization modeling and analysis tools. Carried out by
two teams: TPHOT (optically-thin gas only; SRON) and TEPID (also optically-
thick cases; INAF), for application to different astrophysical contexts (lonized
winds from AGNs and compact sources, ISM of external galaxies flashed by
transients, etc)

* Compute the ionization and energy balance in the gas and follow its evolution
in time with the varying flux (TPHOT and TEPID), transferring the radiation
throughout the cloud with approximated radiative-transfer equations (TEPID)

* Link the evolving ionization balance to atomic databases, compute opacities
and emerging spectra as function of time, density and column density of the
gas.



AHEAD 2020

Time-Evolving Photoionization
AGN outflows
Transients & ISM

A. Luminari, A.L. Thakur, R. Serafinelli



@ Why Bothering?

AHEAD 2020 Baryons in the Universe lie in the surroundings or ionizing sources or are
embedded in photon fields

« The intensity of light that baryons feel varies with time, on different timescales

* AGNSs or XRBs vary on timescales from s to days or even years

» |GM density decreases as universe expands and so does the metagalactic
photon flux they experience on Hubble timescale

« Stars form and die on timescales of million to billion years and affect the
physical state of the ISM of star-forming regions

« When star explodes their transient phenomena (Supernovae, GRBs,
Kilonovae) strongly modify the ionization state of the ISM they leave in, on
timescales from seconds to weeks

* In all these cases photoionization-equillibrium models are not accurate and
provide wrong diagnostics

+ Time-evolving photoionization depends on n. =» removes the n.—R degeneracy
intinsic in the ionization parameter definition




AHEAD 2020

Can we always assume the gas to be in
ionisation equilibrium?

NGC4051 — Krongold, Nicastro+07
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Can we always assume the gas to be in
ionisation equilibrium? NGC4051 — Krongold, Nicastro+07
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— time-evolving ionisation breaks the density degeneracy!



TEPID:
Time-Evolving Photolonisation Device

Funded by the Horizon 2020
Framework Program
of the European Union

AHEAD 20220 Non-equilibrium gas ionisation and time-resolved transmitted spectrum from Grant Agreement No. 87158
optical to X-ray

Time Evolving Photo lonisation Device (TEPID): A novel code for
out-of-equilibrium gas ionisation
A. Luminari!-?®, F. Nicastro?®, Y. Krongold®*®, L. Piro! ®, and A. L. Thakur!*
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ABSTRACT

Context. Photoionisation is one of the main mechanisms at work in the gaseous environment of bright astrophysical sources. A great
deal of information on the gas physics, chemistry and kinematics, and on the ionising source itself, can be gathered through optical
to X-ray spectroscopy. While several public time equilibrium photoionisation codes are readily available and can be used to infer
average gas properties at equilibrium, time-evolving photoionisation models have only very recently started to become available. They
are needed when the ionising source varies faster than the typical gas equilibration timescale. Using equilibrium models to analyse
spectra of non-equilibrium photoionised gas may lead to inaccurate results, and prevents a solid assessment of gas density, physics, and
geometry.

Aims. Our main objective is to present and make available the Time-Evolving Photolonisation Device (TEPID), a new code that self-
consistently solves time evolving photoionisation equations (both thermal and ionisation balance) and accurately follows the response
of the gas to changes in the ionising source.

Methods. TEPID self-consistently follows the gas temperature and ionisation in time by including all the main ionisa-
tion/recombination and heating/cooling mechanisms. The code takes in input the ionising light curve and spectral energy distribution
and solves the time-evolving equations as a function of gas electron density and of time. The running time is intelligently optimised
by an internal algorithm that initially scans the input light curve to set a time-dependent integration frequency. The code is built in a
modular way, can be applied to a variety of astrophysical scenarios and produces time-resolved gas absorption spectra to fit the data.
Results. To describe the structure and main features of the code, we present two applications of TEPID to two dramatically different
astrophysical scenarios: the typical ionised absorbers observed in the X-ray spectra of active galactic nuclei (e.g. warm absorbers and
ultra-fast outflows), and the circumburst environment of a gamma-ray burst. For both cases we show how the gas energy and ionisation
balances vary as a function of time, gas density and distance from the ionising source. We show that time-evolving photoionisation
leads to unique ionisation patterns that cannot be reproduced by stationary photoionisation codes when the gas is out of equilibrium.
This demonstrates the need for codes such as TEPID in view of the unprecedented capabilities that will be offered by the upcoming
high-resolution X-ray spectrometers on board missions like XRISM or Athena.



Diffusive Models

= e.g. Hidrogen Photo-lonization
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Simple Epidemic Diffusion Diagram
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Seasonality of Respiratory Diseases
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Time-evolving Equations

AHEAD 2020

The driving parameters are:

Sets the gnergy 1. theionising flux F;,, < Qi‘;"
transferred to the gas r

<——— Setsthe gas timescale:

2. thegasdensity n, lonisation rates and heating

lonic abundances

dn,i i i
X 4 il
Tl [in + aﬁ‘ecne] Nyi 4+ Fyic1 Nyic1 4 Qe NeNyi
Charge conservation
Temperature Radiative Transfer Ne = Nyr + Nyer + 2Npenr + ...

" -7
Z_:ZZX,i[F_A]+® F'=Foe™ + ¢prc

Dependence on n, breaks the distance-density
degeneracy intrinsic in equilibrium
photoionisation

Linearly depends on F;,, Linearly depends on n,
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TEPID vs Cloudy @ eq: gas emission
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TEPID vs Cloudy/XSTAR @eq
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Evolution of gas temperature and ionisation
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n, = 102¢m=3: instantaneous response (ionisation equilibrium)

n, = 108cm™3: damped and delayed response
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Time-Resolved spectra
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Time-Resolved spectra
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Time-Resolved spectra
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AHEAD 2020Work in progress: NGC 4051

R. Serafinelli, F. Nicastro, Y.

Fit of XMM-Newton time-resolved spectra of the Narrow-Line Syl NGC 4051
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Gamma Ray Bursts
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GRB are intrinsically transient, SWIftXRT data of GRB 060729

non-equilibrium sources:
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Regions and host galaxies... but:

Illuminated ambient gas is out of

photoionisation equilibrium:
Piro+02, D’Elia+09 , Krongold+13, Heintz+18 Need for time-evolving

modelling!
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2. Time evolving computation

Spectra for increasing time after the burst:
medium increasingly transparent
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GRB060729 count spectrum
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X-ray afterglow spectra are usually fitted
phenomenologically through a layer cold absorber
(Tbabs model in xspec).

However, proper time-evolving ionisation of the
circumburst environment with gives a much
better fit!



XMM-Newton GRB Golden-

Sample

Fit of XMM-Newton spectra of high-flux GRB afterglows

TEPID reveals Star Forming Region-like
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@ Conclusions ::*:}
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* AHEAD2020 activitites have been extremely productives over the past four years

* many novel powerful tools for advanced data-analysis and modeling for current
and new X-ray observatories have been realized, tested and delivered

* For some of these tools and models the work will keep going (within the
perimiter of the project and beyond that) towards continuous utp%rades and
updates (i.e. time-evolving photoionization tools, STATIX, 2D of ICM
inhomogeneities, etc.) in close synergy with the continuous improvement and
refinement of the atomic database.

* TEPID Time-Evolving Photoionization Device is already available for absorption
and continuum-emission spectral studies (not yet publicly, but please contact
us), will “soon” (12-24 months) include level-population and so line-emission
and be made publicly abailable via a GUI



