

HARNESSING THE XMM-NEWTON DATA WITH XMM2ATHENA : X-RAY SPECTRAL MODELING OF 4XMM-DR11 DETECTIONS

Harnessing the XMM-Newton data with *XMM2ATHENA*: X-ray spectral modeling of 4XMM-DR11 detections

George Mountrichas

Instituto de Fisica de Cantabria

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

HARNESSING THE XMM-NEWTON DATA WITH XMM2ATHENA : X-RAY SPECTRAL MODELING OF 4XMM-DR11 DETECTIONS.

The link among X-ray spectral properties, AGN structure and the host galaxy

G. Mountrichas, A. Viitanen, F. J. Carrera, H. Stiele, A. Ruiz, I. Georgantopoulos, S. Mateos, A. Corral

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

- > Do X-ray obscured and unobscured AGN live in host galaxies with different properties (SFR, Mstar)?
- Is the accretion efficiency different in the two AGN populations?
- > How do the M_{BH} of the two AGN populations compare?
- > Is there a correlation between the photon index and n_{EDD}?

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

Host galaxy properties based on optical criteria (optical spectra)

Mountrichas et al. 2021b (see also Zou et al. 2019)

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

Host galaxy properties based on the inclination angle (SED fitting analysis)

- > Type 2 AGN tend to inhabit more massive galaxies compared to type 1.
- The comparison of the SFR between the two AGN populations depends on Lx and redshift: Type 2 sources tend to have lower SFR compared to type 1 AGNs at z < 1. This picture reverses at z > 2 and log L_X > 44

Mountrichas & Georgantopoulos 2024

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

Host galaxy properties based on X-ray criteria

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

More recently, Georgantopoulos, Pouliasis, Mountrichas et al. 2023:

N_H=10²³ cm⁻²

- Unobscured AGN tend to live in younger galaxies compared to obscured.
- Obscured AGN tend to live in systems with higher Mstar compared to unobscured.
- Obscured AGN have lower n_{EDD} compared to unobscured.

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

Possible reasons for the discrepant results:

1 .Different N_H cut

2. Different L_x probed

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

> M_{BH} is strongly correlated with Mstar

(e.g., Jahnke et al. 2009, Merloni et al. 2010, Poitevineau et al. 2023, Mountrichas 2023)

The M_{BH}/Mstar ratio does not evolve with redshift, at least up to redshift 2 (e.g., Mountrichas 2023, Setoguchi et al. 2021, 2023, Suh et al. 2020, Sun et al. 2015, Jahnke et al. 2009)

Do these correlations hold for both AGN populations?

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

X-ray spectral index is sensitive to the properties of the accretion disk (temperature, ionization state). X-ray emission is also associated with a hot, optically thin corona of electrons above the accretion disk. The properties of the corona (temperature, optical depth) can impact the X-ray spectral index.

The relation between Γ and n_{EDD} is interpreted as the link between the accretion efficiency in the accretion disk and the physical status of the corona (e.g., Vasudevan & Fabian 2007, Davis & Laor 2011).

or

A correlation between Γ and n_{EDD} could be explained by the significant dependence of the cut-off energy on the n_{EDD} (e.g., Ricci et al. 2018).

However:

It is not clear whether such a correlation between Γ and n_{EDD} is robust or universal!

(e.g., Shemmer et al. 2008, Risaliti et al. 2009, Sobolewska & Papadakis 2009, Brightman et al. 2013, Trakhtenbrot et al. 2017, Kamraj et al. 2007)

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

THE LINK AMONG X-RAY SPECTRAL PROPERTIES, AGN STRUCTURE AND THE HOST GALAXY

DATA

Viitanen, Mountrichas, Carrera et al. (in prep.)

- > 210, 444 sources with available spectrum in one or more detections, in 4XMM-DR11
- Cross-match it with the Tranin et al. 2022 sample of classified sources (AGN, stars, XRBs, CVs) → 76,610 AGN.
- > We obtain photoz from Ruiz et al. (in prep.) \rightarrow 35,536 AGN (specz+photoz)
- Perform X-ray spectral analysis (powerlaw with two absorbing media: local Galactic absorption, in-situ absorption at the AGN redshift
- ➢ Construct the SEDs (SDSS/Pan-STARRS, 2MASS, WISE) →2,501 AGN
- > Selection criteria \rightarrow 1,443 AGN (1,231 at z<0.7 and 212 at 0.7<z<1.9)

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

THE LINK AMONG X-RAY SPECTRAL PROPERTIES, AGN STRUCTURE AND THE HOST GALAXY

Do X-ray obscured and non-obscured AGN live in host galaxies with different properties (SFR, Mtar)?

Is the accretion efficiency different in the two AGN populations?

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

XMM2ATHEN

RESULTS I: OBSCURATION AND HOST GALAXY PROPERTIES

Obscured AGN tend to live in more massive systems and their hosts have lower SFR compared to their unobscured counterparts.

However, only the Mstar difference appears to be statistically significant!

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

RESULTS I: OBSCURATION AND AGN ACCRETION EFFICIENCY

Obscured sources tend to have lower λ_{sBHAR} compared to unobscured .

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

THE LINK AMONG X-RAY SPECTRAL PROPERTIES, AGN STRUCTURE AND THE HOST GALAXY

How do the M_{BH} of the two AGN populations compare?

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

From the 1,443 AGN, 344 are in the Wu & Shen 2022 catalogue. 271 are at z<1.9</p>

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

RESULTS II: OBSCURATION AND M_{BH}

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

RESULTS II: OBSCURATION AND M_{BH}

SMBH growth in the obscured phase is higher than the galaxy growth?

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

THE LINK AMONG X-RAY SPECTRAL PROPERTIES, AGN STRUCTURE AND THE HOST GALAXY

Is there a correlation between the photon index and n_{EDD}?

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

RESULTS III: OBSCURATION AND AGN STRUCTURE

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

CONCLUSIONS I

Obscured AGN tend to live in more massive systems (by ~ 0.1dex) compared to unobscured. The difference, although small, appears to be statistically significant.

Obscured sources also tend to live in galaxies with lower SFR (by ~ 0.25 dex) compared to their unobscured counterparts, however, this different is not statistically significant.

Unobscured AGN have, on average, higher specific black hole accretion rates (a proxy of the Eddington ratio) compared to unobscured sources. The difference is 0.1
 0.2 dex and appears to have a high statistical significance.

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

> Type 1 AGN with NH > 10^{22} cm⁻² tend to have higher M_{BH} compared to type 1 sources with lower N_H values, at similar Mstar.

➢ For type 1 AGN, the M_{BH}/M_{star} ratio is nearly constant with N_H up to N_H = 10^{22} cm⁻². However, our results suggest that the M_{BH} /Mstar ratio increases at higher N_H values

> A correlation is found between the spectral photon index, Γ, and the Eddington ratio, for type 1 AGN with $N_H < 10^{22}$ cm⁻²

The XMM-Newton survey legacy for Athena and beyond workshop February 26-29, 2024

