Multiwavelength Classification of X-ray Sources with a Supervised Machine-Learning Approach

Steven Chen¹, Hui Yang¹, Oleg Kargaltsev¹, Jeremy Hare², Yichao Lin¹

- 1. George Washington University
- 2. NASA Goddard Space Flight Center

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Compact Object (CO) Source Populations

Galactic CO population is poorly constrained

- ▶ 3,000 NSs, ~30 BHs detected
- ▶ 10⁸⁻⁹ NSs, 10⁶⁻⁸ BHs expected (Camenzind, 2007)
- CO populations constrain stellar evolution models, including:
 - Massive binary evolution
 - Supernova explosion physics
 - Binary CO merger rates
- Many COs exist in dense stellar environments.
- Growing population of unclassified Gamma-ray sources (GeV, TeV), highly likely to be Blazars or COs.

Modern X-ray observatories find millions of serendipitous sources, most of which remain unclassified

Catalogs	# of unique X-ray sources		
Chandra Source Catalog (CSC) 2.1	~500k		
4XMM-DR13	~650k		
eROSITA All-Sky Survey DR1	>1 million		
<figure></figure>	Unassosiated:60%1949 4FGL-DR3 sources with b <10°		

CSC v2.0 Detection Map from CXO

Star Clusters

- Gravitationally bound groups of stars
- Open Clusters
 - ► Young (mostly <1 Gyr)
 - ► Less massive (<10⁵ M_{\odot})
 - ► In galactic disk
 - Younger ones may contain recently formed CO systems (e.g., magnetar in Westerlund 1)
- Globular Clusters
 - ▶ Old (~10 Gyr)
 - ▶ Massive (>10⁶ M_{\odot})
 - Off galactic disk
 - Contains many CO systems
- Contains thousands of unclassified Chandra sources.

MUWCLASS pipeline flow chart

MUWCLASS

▶ 30+ multiwavelength (MW) features:

- ▶ Gaia, 2MASS, WISE, HST
- ► X-ray Fluxes
- Magnitudes
- ► Colors
- CSC Variability
- ► Luminosities
- Multiple random forest classification runs, each time sampling feature uncertainties
- Probabilistic cross-matching to MW counterparts (NWay)
- Correcting for extinction bias on AGNs in TD
- Correcting class imbalance

Uncertainty Sampling

- Samples uncertainty in fluxes, magnitudes, other features
- Applies to TD and unclassified sources
- Uncertainties may impact classification
- Multiple random forests, each sampling uncertainties randomly

Feature 1 Value	Red	Blue	Green
5.8	0.6	0.2	0.2
5.3	1	0	0
6.3	0.1	0.85	0.05

Correcting Extinction/Absorption bias for AGNs in TD

- Most AGN in TD off galactic plane, low absorption
- Real AGN appear very different in plane
- Need to correct for bias:
- Redden all AGN in TD in direction of source to be classified
- Deredden all sources in TD and field to be classified
 - Only possible if extinction up to distance of sources known
 - Practical for globular clusters

Probabilistic Cross-matching

- Multiwavelength properties crucial for classification
- Assigning correct multiwavelength counterpart tricky in dense environments
- How to choose association when multiple counterparts of same X-ray source exist?
 - Use closest counterpart
 - ▶ Use most confident classification
 - Consider both factors
 - Combine classification probabilities of different associations
- Automation requires probabilistic approach, possible with NWay (Salvato 2017)

Training Datasets

- Based on cross-matching to classified sources in literature
- CSC TD
 - ► Gaia, 2MASS, WISE
 - ► All sky, published in <u>Yang et al. 2022</u>
- ► GC TD
 - Very old, very dense
 - Requires HST counterparts
 - Separate TD, published in <u>Chen et al. 2023</u>
- 4XMM TD
 - Cross-matched to CSC first to get improved Xray positions, when possible
 - All sky. Submitted as RN, Lin et al. 2024
- eROSITA TD
 - Based on cross-matching to other TDs
 - Very Preliminary!

Class Imbalance

- Some classes overrepresented (AGNs), while some classes rare (NSs)
- SMOTE samples points in feature space between objects of one class
 - Very linear, unphysical
- We developed a method of physically motivated oversampling:
 - Sample sources randomly reddened and absorbed in feature space according to per class distribution in TD

LOO Evaluation: Confusion Matrices

Evaluation

- Well-populated classes have high degree of classification accuracy
- CO classes are underpopulated in TDs, do not perform as well
 - Often confused with AGNs due to similarities in X-ray features
 - ► Intrinsically diverse
 - Trade-off between more populous but more heterogeneous classes, and less populous but more homogeneous classes
- Biases:
 - Sources present in TD are brighter/closer/less absorbed compared to sources we classify
 - ▶ Faint AGN populations in deeper fields may be different from bright AGN in TD
- Missing MW counterparts may be due to lack of depth, or intrinsic faintness, which may have physical significance that MUWCLASS is agnostic to.

CSC Sources in Open Clusters

- High confidence of LM-STAR classifications due to presence of main sequence
- Confidently identified coronally active stars allows for studying stellar activity as a function of age, mass, rotation period.
- Cluster member COs expected to be rare but can be interesting (e.g., electron capture SN remnants)
- Discovered several serendipitous background AGN and candidate COs

Example of Candidate CO: NGC 7160

- MUWCLASS classified as CV
- No optical counterpart in Gaia
- Clear ~10 ks periodicity in 4 Chandra observations
- Previously suggested as CV in literature

CSC Sources in Omega Centauri

 Classified sources outlined by black circles, TD sources are not

- ~25% of source classifications depend on the choice of HST counterpart
- Classifications mostly correct for 18 sources with known class, even when removed from TD
- Many classified CVs, due to similarity to TD CVs in X-rays and optical features
- Large number of classified MSPs due to similarity to TD MSPs in Xrays, while lacking HST counterparts
- Requires more detailed analysis

Interesting Sources in Omega Cen

Bright source classified as CV with all possible counterparts

Bright source classified as spider with all possible counterparts

Exploring Unidentified 4FGL-DR4 Sources (unIDs) with MUWCLASS (to be submitted)

- Classified 1206 CSCv2 X-ray sources within 73 unIDs
- Identified 107 X-ray sources as potential X-ray counterparts to GeV sources.
- Candidate unID classifications: 3 NS, 2 XRB, 13 AGN, 2 SFR, 21 ambiguous

- Classification breakdown of X-ray sources within 95% error ellipses of unIDs
- Accounting for feature uncertainties help selecting confident classifications cutting at classification confidence threshold (CT)

- 2CXO J005806.2-460419 in 4FGL J0058.3-4603.
- Green: radio, Blue: CXO
- Classified AGN/Blazar
- Addition of radio surveys important for future development

Hui Yang job hunting in 2024

- 2CXO J184443.3-030518 in 4FGL J1844.4-0306
- Classified as NS
- Overlaps with extended emission, possible PWN.

Preliminary classification of eRASS1 sources: Hunting for COs

- Classified ~1M eRASS1 sources using only X-ray features (band fluxes, HRs), and Identified 243 CO candidates.
- Adding MW features narrows down to 29 CO candidates.

Hui Yang job hunting in 2024

Example of counterparts in source field

Conclusion

- MUWCLASS is a powerful tool for rapidly classifying many sources in different environments
 - Can substantially increase statistic for population studies of confidently classified source classes, e.g., flaring stars and AGNs.
 - Identify unusual/interesting sources for follow up observations.
 - Classify sources at other wavelengths (e.g., radio, Gamma rays).
- ► Future improvements:
 - Integration of additional sensitive surveys, including radio.
 - Galactic Plane survey: Only CXO has sufficient angular resolution. AXIS mission concept ideal for future surveys.
 - Expansion of TD. Community-based living database of classified X-ray sources.