# Mining the high-energy Universe: a probabilistic, interpretable classification of X-ray sources for large X-ray surveys – The power of CLAXBOI

Hugo TRANIN, Postdoc, ICCUB, University of Barcelona





26-29 Feb 2024 Toulouse (France) 60



## Data preparation Classification and interpretation Applications

#### X-ray catalogs grow larger and larger

Observations period, Coverage PSF, Median Sensitivity Number of sources

657k

XMM-Newton 4XMM-DR13 (Webb+2020)

Chandra CSC2 (Evans+2019)

Swift-XRT 2SXPS (Evans+2020)

XMM2ATHENA

2000-2014 560 deg<sup>2</sup>

2005-2018

3790 deg<sup>2</sup>

0.5" on-axis 4e-15 erg/cm<sup>2</sup>/s

317k

6" 8e-14 erg/cm<sup>2</sup>/s



2000-2022 1328 deg<sup>2</sup>

6" 1e-14 erg/cm<sup>2</sup>/s Focus of this talk

Observations period, Coverage PSF, Median Sensitivity Number of sources

XMM-Newton 4XMM-DR13 (Webb+2020) 2000-2022 1328 deg<sup>2</sup>

6" 1e-14 erg/cm<sup>2</sup>/s 657k

 $\rightarrow$  Expected content: AGN, stars, XRB, CV, galaxy clusters... How to find them?  $\Rightarrow$  **automatic source classification** 

## 1) Data preparation

"Prepare for battle" - Gandalf

### Preparing the dataset for classification

#### 1) Identification of known sources

#### X-ray samples

Catalogs of AGN (e.g. Secrest+2015) Catalogs of stars (e.g. Kharchenko+2009) Catalogs of XRB & CV (e.g. Ritter+2014)



TOPCAT software (Taylor+2005) Sky with errors

 $\otimes$ 

(Simplistic crossmatch)

XMM2ATHEN



Ex. training sample of 4XMM-DR10

| AGN    | Star  | XRB | CV  |  |
|--------|-------|-----|-----|--|
| 19,000 | 6,000 | 730 | 260 |  |

Tranin et al. A&A 2022

## Preparing the dataset for classification

#### 2) Identification of counterparts

 $\otimes$ 

X-ray samples

optical / IR surveys (Gaia, 2MASS...) high sky density → probabilistic treatment

4XMM J233009.7-562615 / DES J233009.77-562617.9 (proba=0.75)

⇒ Multiwavelength associations

Flux ratios

 $logFxFr = log_{10}\left(rac{F_X}{F_{R (Gaia)}}
ight)$ 

Tranin et al. A&A 2022

X-ray (XMM)

**Optical** (DES)

10 arcsec

## Preparing the dataset for classification

3) Distance estimate

X-ray samples

Gaia distances(Bailer-Jones+2021)

GLADE (Dalya+2016)
 TOPCAT Sky Ellipses Match

 $\Rightarrow$  source distance & luminosity

 $L_X = 4\pi D^2 \times F_X$ 

XMM2ATHENA

GLADE = all-sky highly complete galaxy catalog

>1M galaxies at D<500Mpc

ULX candidates

Tranin et al. A&A 2022

### Multiwavelength dataset ready for classification



Tranin et al. A&A 2022

|                       | Name / Reference                                   | in<br>4XMM-DR11 |
|-----------------------|----------------------------------------------------|-----------------|
| X-ray samples         |                                                    | 496k            |
| Optical sources       | Gaia EDR3, PanSTARRS,<br>DES                       | 310k            |
| Infrared sources      | 2MASS, AllWISE, UnWISE                             | 420k            |
| Matches with galaxies | GLADE (Dalya+2016)                                 | 16k             |
| Identified AGN        | Véron-Cetty+2010, Secrest+2015,<br>Simbad          | 44k             |
| Identified Stars      | ASCC (Kharchenko+2009)                             | 8k              |
| Identified XRB        | Liu Q. Z.+2006, 2007,<br>Humphrey+2008, Mineo+2012 | 520             |
| Identified CV         | Downes+2006, Ritter+2014                           | 243             |
| 496k                  | Optical counterparts                               |                 |

Infrared counterparts

420k

310

XMM2ATHENA

small samples

### Features used by the classifier

| Name                                     | Category     |  |  |
|------------------------------------------|--------------|--|--|
| Galactic latitude                        | Location     |  |  |
| Gaia proper motion                       | Location     |  |  |
| Relative distance to the host center     | Location     |  |  |
| X-ray luminosity                         | Location     |  |  |
| X-ray over optical (b,r) flux ratio      | Counterparts |  |  |
| X-ray over infrared (W1,W2) flux ratio   | Counterparts |  |  |
| X-ray max to min flux ratio              | Variability  |  |  |
| X-ray lower max to higher min flux ratio | Variability  |  |  |
| X-ray hardness ratio HR1, HR2, HR3       | Hardness     |  |  |
| Power law index fitted to X-ray spectrum | Hardness     |  |  |
|                                          | XMM2ATHEN    |  |  |

Tranin et al. A&A 2022

#### Probability densities of the training samples

#### **Physical properties:**

- logFxFr (counterpart)
  - logFmaxFmin (variability)
- HR1 (spectrum)
  - b (location)
- sep (location)

b L<sub>x</sub> (spectrum)



### 2) Probabilistic classification (CLAXBOI) and interpretation

"You're a wizard, Harry" – Hagrid



#### Methods for automatic source classification

#### Before 2022, in X-ray astronomy:

- Decision tree (e.g. Lin+2012)  $\rightarrow$  poor performance
- Random forest (e.g. Farrell+2015, Arnason+2020)  $\rightarrow$  poor interpretability
- Other machine learning algorithm (nearest neighbors, naive Bayes...) (e.g. Pineau+2017, Arnason+2020)

CLAXBOI: probabilistic classification, good interpretability and reliability





#### **Previous studies**

Previously classified samples (before 2022)
Small! ~ 10<sup>3-4</sup> sources instead of 10<sup>6</sup> detected
Only bright sources (e.g. Lin+2012)
Only variable sources (e.g. Farrell+2015)
Only specific fields (e.g. Arnason+2020)

CLAXBOI: classification of **most of well-detected point-like sources** 



### Naive Bayes Classifier (2 classes)



Possible criterion:  $log(F_X/F_{W1}) < -1 \Rightarrow star$  $else \Rightarrow AGN$ 

... but overlap

Tranin et al. A&A 2022



#### Naive Bayes Classifier (2 classes)



#### Maximising the classification performance

- Trade-off between recall and precision
- Optimization : fine-tuning the  $\alpha_{t}$

$$\mathbb{P}(\mathbf{c}|data) = \frac{\mathcal{P}(\mathbf{c}) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|\mathbf{c})^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}{\sum_{C \in \{\text{classes}\}} \mathcal{P}(C) \times \left(\prod_{t \in \{\text{cat}\}} \mathcal{L}(t|C)^{\alpha_t}\right)^{1/\sum_{t \in \{\text{cat}\}} \alpha_t}}$$

One  $\alpha_t$  per category of properties:  $\alpha_{location}$ ,  $\alpha_{spectrum}$ ,  $\alpha_{variability}$ ,  $\alpha_{counterparts}$ Optimized to maximize the f<sub>1</sub>-score of XRB (f<sub>1</sub> = (recall<sup>-1</sup>+precision<sup>-1</sup>)<sup>-1</sup>)

### Results (Confusion matrix)

on 2SXPS

|                       | AGN   | Star  | XRB   | CV    |
|-----------------------|-------|-------|-------|-------|
| →AGN                  | 18373 | 25    | 46    | 149   |
| →Star                 | 15    | 6197  | 10    | 12    |
| →XRB                  | 80    | 12    | 479   | 10    |
| →CV                   | 4     | 0     | 8     | 81    |
| recall (%)            | 99.5  | 99.4  | 88.2  | 32.1  |
| precision<br>(%)      | 98.9  | 97.2  | 93.7  | 84.6  |
| f <sub>1</sub> -score | 0.992 | 0.983 | 0.909 | 0.465 |

on 4XMM training sample (because no overfitting + few XRB and CV)

| Truth $\rightarrow$                                                                      | AGN                                 | Star                                | XRB                               | CV                                | Total cl.                                    |  |
|------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------|--|
| →AGN                                                                                     | 19515                               | 82                                  | 25                                | 191                               | 19813                                        |  |
| →Star                                                                                    | 44                                  | 4628                                | 3                                 | 27                                | 4702                                         |  |
| →XRB                                                                                     | 140                                 | 18                                  | 326                               | 17                                | 501                                          |  |
| $\rightarrow CV$                                                                         | 9                                   | 9                                   | 2                                 | 124                               | 144                                          |  |
| Total                                                                                    | 19708                               | 4737                                | 356                               | 359                               | Average                                      |  |
| recall (%)                                                                               | 99.0                                | 97.7                                | 91.6                              | 34.5                              | 80.7                                         |  |
| precision (%)                                                                            | 97.0                                | 98.6                                | 90.7                              | 85.5                              | 92.3                                         |  |
| Random Forest o                                                                          | Random Forest on 2SXPS              |                                     |                                   |                                   |                                              |  |
| Truth $\rightarrow$                                                                      | AGN                                 | Star                                | XRB                               | CV                                | Total al                                     |  |
|                                                                                          |                                     |                                     | mu                                | CV                                | Total CI.                                    |  |
| →AGN                                                                                     | 5889                                | 7                                   | 20                                | 39                                | 5955                                         |  |
| →AGN<br>→Star                                                                            | 5889<br>6                           | 7<br>1404                           | 20<br>1                           | 39<br>3                           | 5955<br>1414                                 |  |
| →AGN<br>→Star<br>→XRB                                                                    | 5889<br>6<br>9                      | 7<br>1404<br>5                      | 20<br>1<br>83                     | 39<br>3<br>5                      | 5955<br>1414<br>102                          |  |
| →AGN<br>→Star<br>→XRB<br>→CV                                                             | 5889<br>6<br>9<br>7                 | 7<br>1404<br>5<br>1                 | 20<br>1<br>83<br>1                | 39<br>3<br>5<br>68                | 5955<br>1414<br>102<br>77                    |  |
| →AGN<br>→Star<br>→XRB<br>→CV<br>Total                                                    | 5889<br>6<br>9<br>7<br>5911         | 7<br>1404<br>5<br>1<br>1417         | 20<br>1<br>83<br>1<br>105         | 39<br>3<br>5<br>68<br>115         | 5955<br>1414<br>102<br>77<br>Average         |  |
| $ \rightarrow AGN  \rightarrow Star  \rightarrow XRB  \rightarrow CV  Total  recall (%)$ | 5889<br>6<br>9<br>7<br>5911<br>99.6 | 7<br>1404<br>5<br>1<br>1417<br>99.1 | 20<br>1<br>83<br>1<br>105<br>79.0 | 39<br>3<br>5<br>68<br>115<br>59.1 | 5955<br>1414<br>102<br>77<br>Average<br>84.2 |  |

Tranin et al. A&A 2022

⇒ better results on XRB + better interpretability

### Interpretation #1: Finding outliers

$$O.M. = -\log\left(\mathcal{P}(\mathbf{c}) \times \prod_{t \in \{\text{cat}\}} \mathcal{L}(t|\mathbf{c})^{\alpha_t / \sum_{t \in \{\text{cat}\}} \alpha_t}\right)$$

~ scarcity of the training sample at the location of the source in the parameter space
 Depends on the output class c
 ⇒ way to nuance the classification



Tranin et al. A&A 2022

Outliers = one of these:

- Spurious sources
- Spurious identifications
- If classified as star/AGN : special types of star/AGN
- If classified as XRB : rare & variable objects such as TDE, GRB, supernovae...

#### Interpretation #2: marginal probabilities

Sources are classified based on their location, spectrum, counterparts and variability  $\Rightarrow$  find the discriminant properties thanks to marginal probabilities



#### Interpretation #3: alternative classifications

Sources are classified based on their

location, spectrum, counterparts, variability

What if we ignore a category of properties? **Alternative classification** 

Ex. previous source: no alternative classification this blended source: alternative classification without location = Galactic XRB



P<sub>extended</sub> = 92%

XMM extent 42" Blends 3 Chandra sources No opt or IR counterpart Low Galactic latitude b=1°

## 3) Applications

"This is a beautiful tool but it still needs an active brain to use it"
— Mara Salvato

#### Classification of a whole catalog

 4XMM-DR12 fully classified (XMM2ATHENA deliverables) Published in April 2023:

http://xmm-ssc.irap.omp.eu/xmm2athena/catalogues/

7 classes Priors: 0.55,0.20,0.03,0.02, 0.05,0.05,0.10

|                     |       |      |         |      |       |        | /        |
|---------------------|-------|------|---------|------|-------|--------|----------|
| truth $\rightarrow$ | AGN   | Star | gal_XRB | CV   | AGN_2 | ex_XRB | extended |
| →AGN                | 23770 | 26   | 55      | 151  | 0     | 0      | 1097     |
| →Star               | 8     | 8246 | 2       | 6    | 0     | 3      | 597      |
| →gal_XRB            | 15    | 2    | 79      | 30   | 0     | 0      | 12       |
| →CV                 | 1     | 2    | 3       | 78   | 0     | × 0    | 1        |
| →AGN_2              | 7     | 3    | 0       | 1    | 958   | 27     | 313      |
| →ex_XRB             | 1     | 2    | 1       | 5    | 55    | 510    | 559      |
| →extended           | 0     | 0    | 0       | 0    | 0     | 0      | 61438    |
| recall (%)          | 99.9  | 99.6 | 56.4    | 28.8 | 94.6  | 94.4   | 95.9     |
| precision (%)       | 95.5  | 98.9 | 86.6    | 88.9 | 93.3  | 91.7   | 100      |

### Classification of a whole catalog

 4XMM-DR12 fully classified (XMM2ATHENA deliverables) Published in April 2023: <a href="http://xmm-ssc.irap.omp.eu/xmm2athena/catalogues/">http://xmm-ssc.irap.omp.eu/xmm2athena/catalogues/</a>

Content 430,941 AGN 75,160 stars 42,810 Galactic XRB 8,889 extragalactic XRB 920 Cataclysmic Variables 71,627 extended sources

Priors: 0.55,0.20,0.03,0.02,0.05,0.05,0.10

Beware of spurious sources + crowded regions



#### Specialisation of the classification

#### X-ray samples $\otimes$ GLADE (44k sources)

ULX candidates

M51 in X-ray (XMM)



M51 in optical (PanSTARRS)

**CLAXBOI** 



Goal: properly identify ULX

### Identifying ULX in nearby galaxies

- A lot of interlopers remain here if we trust the maximum probability
- We need a physical prior and compare it with P<sub>XRB</sub>
- Selection criterion : P<sub>XRB</sub> > f<sub>contaminant</sub>, frequency of background AGN from logN-logS



For the full population study check Tranin et al 2024, A&A 681 A16

#### [ your science case here! ]

🕮 README



A probabilistic classification of X-ray sources

Classification of X-ray sources using Naive Bayes Optimized Inference (CLAXBOI)

This folder contains all the necessary to run the CLAXBOI code (Tranin et al. 2022, A&A 657, 138) to augment and classify your X-ray catalog. Requirements on the system:

1. Python >3.6 2. Uburbu /for.a fow os nuctore.sommands).



CLAXBOI is public, documented and accessible via github (updated this week): <u>https://github.com/htranin/classificationXray</u>

Feel free to use it for your science cases and reach me in case of questions!

#### Complementarity with citizen science

- CLAXBOI includes data preparation and value-adding
- Fully probabilistic classification
- Well-behaved on catalog-sized samples
- Both reliable and interpretable
- Samples of known XRB, CV, TDE... are still small

⇒ to enlarge traning samples and find anomalies, use citizen science.
 ⇒ Tomorrow's talk on CLAXSON

×

## Conclusion

CLAXBOI is a versatile, open-source and straightforward code to make the most of one's X-ray catalog

- It can be easily tuned to identify X-ray sources in **both** general (entire catalogs) and specific (population study) frameworks
- It has been successfully applied to 4XMM-DR12 (DR14 coming soon) but also CSC2, 2SXPS
- It provides highly interpretable classifications, helping scientific exploitation
- □ Automatic and Human-based source classification are complementary → see tomorrow's talk about CLAXSON citizen science project

github link:



Image credit: NASA/JPL-Caltech

XMM2ATHENA

Gi

1.