

Emille Ishida, Anais Möller and Julien Peloton on behalf of the Fink Team

What lies ahead

MMA and discovery with Rubin

- State of the art data sets in optical astronomy
- The Rubin broker ecosystem
- The role of Machine Learning
- The human factor

How did we get here?

Big data happened

The Vera Rubin Observatory Large Survey of Space and Time (LSST)

In a nutshell:

- telescope: 8.4m primary mirror
- world's largest CCD camera:
 3.2 Gpixels

In numbers:

- 10-year survey, starting 2024+
- 1,000 images/night = 15TB/night
- 10 million transient candidates per night
 - Publicly available...
 - ... but huge!

To keep in mind ...

1) Very big data

2) Survey mode observation strategy

How to distribute this to people who will do science?

From detection to science

The data path

every ~30 seconds down to mag ~24

10 million alerts per night...

Machine learning Catalog association Streams join

BROKER

We would like the interesting ones ...

Rubin broker landscape

(What is an alert?)

Alerts based on Difference Image Analysis

Each alert contains

- Information about the new detection (magnitude, position, ...)
- Neighbours information (xmatches, etc)
- Historical information if the object has been seen previously
- Small images around the detection (60x60 pixels)

Domain specialist world (this is you)

You can access this via de Fink Science portal or the API

All alerts data is public!

https://fink-portal.org/

Domain specialist world (the expert)

Filter Catalog or stream xmatch Taylored science module

Xmatch with GW streams

O4 is coming - Fink has already some tool to play with GW sky maps

<u>https://fink-portal.org/api</u> \rightarrow Gravitational Waves \rightarrow tutorial!

```
# Query Fink
data = gzip.open(fn, 'rb').read()
r = requests.post(
    'https://fink-portal.org/api/v1/bayestar',
    json={
        'bayestar': str(data),
        'credible_level': credible_level,
        'output-format': 'json'
}
```


Domain specialist world (the expert)

Taylored science module

f(alerts; ++) => class scores Boolean

Example: TDE

- Focused on rising TDE examples
- Remove things we already know (xmatch with whatever possible)
- Multi-wavelength feature extraction with Rainbow
- Anomaly detection based ML-model

Work by Erwan Quintin, Miguel Llamas Lanza and Etienne Russeil

To be continued.

Receiving your candidates

• Kafka stream -- for on-the-fly notifications

Receiving your candidates

• Bots

	▣		←	\rightarrow	٩		
	finl	k-broker ~		Ŧ	C		
	🕄 Upgrade Plan						
Home	#	agn					
~	#	announcements					
μ LQ	#	anomaly-detection					
DMs	#	at2023sze_ztf23abe	eqble				
\bigtriangleup	#	bot_al_loop					
Activity	# bot_anomaly						
П	#	bot_anomaly_area					
U ater	#	# bot_kilonova-candidates					
Later	#	bot_known_tde_foll	ow_u	qı			
•••	#	bot_tns					

Cross-match-based kilonova bot APP 9:16 AM Fink Science Portal: ZTF24aaemydm

Time:

- 2024-02-12 08:02:33.003 UTC
- Time since first detection: 1.9 hours

SkyPortal: ZTF24aaemydm

Presumed host galaxy:

- HyperLEDA Name: NGC3052
- 2MASS XSC Name: 09542791-1838202
- Luminosity distance: (57.25 ± nan) Mpc
- RA/Dec: 148.6163330 -18.6389450
- log10(Stellar mass/Ms): 10.81

Cross-match:

- Alert-host distance: 3.43 kpc
- Absolute magnitude: -15.54

Measurement (band r):

- Apparent magnitude: 18.25 ± 0.07

RA/Dec:

- [hours, deg]: 9 54 28.51 -18 38 10.9
- [deg, deg]: 148.6188113 -18.6363575

Galactic latitude:

- [deg]: 27.2874401

Receiving your candidates

Coloct data course

Added value
 + download
 service

Y	Select data source		Data Source
	Source: ZTF		Choose the type of alerts you want to retrieve
	Filter alerts		C ZTF ELASTICC (v1) ELASTICC (v2.0) ELASTICC (v2.1)
	Dates: 2023-06-01 - 2024-01-31		Filters
	Classe(s): ['SN candidate', '(TNS) SN',		Date Range *
	'(SIMBAD) SN']		Pick up start and stop dates (included).
	Conditions: nalerthist>5;		June 1, 2023 – January 31, 2024
5	Select content		Alert class
	Content: Full packet		Select all classes you like! Default is all classes.
			(Fink) Supernova candidates \times (TNS) SN \times (SIMBAD) SN \times
5	Submit		
	Trigger your job!		Extra conditions
			One condition per line (SQL syntax), ending with semi-colon. See here for fields description and here for examples.
(Description	~	nalerthist>5; magpsf < 22
1		~	Alert content
		Ť	Choose the content you want to retrieve
			Lightcurve (~1 4 KB/alert) Cutouts (~41 KB/alert) Euli packet (~55 KB/alert)
			😸 Submit job

Fink Data Transfer

The beauty of an observational science

"... telescopes that merely achieve their stated science goals have probably failed to capture the most important scientific discoveries available to them."

Norris, R. (2017). Discovering the Unexpected in Astronomical Survey Data. Publications of the Astronomical Society of Australia, 34, E007. doi:10.1017/pasa.2016.63

- Started with extragalactic experts, now Fink-wide engagement
- Random forest model
- Quick reaction from the follow-up community:
 - 9.2m SALT (South Africa)
 - 0.6m and 2.5m KGO (Russia)
 - 0.25m FRAM-ORM (Spain)
 - 0.2M FOSC-ES32 (Italy)

FIRST NIGHT – FIRST ANOMALY

- ASASSN-23ac/PNV J06245297+0208207
- Simbad: WD candidate

REPORTED IN TNS AS AT 2023AWT

Personalized ML for big data

Get inspired

#FinkDreamShots

From OzFink 2023 - Melbourne, Australia - https://www.ozgrav.org/ozfink-workshop-2023.html

What do you want to see?

Case study: Kilonova

Problem 1: there are no labels, only 1 confirmed detection- with a GW counterpart

Problem 2: we need to find it fast

https://fink-portal.org/ZTF21abgcgyq

Biswas et al., submitted to A&A, arXiv:astro-ph/2210.17433

Case study: Kilonova

GRANDMA Observations of ZTF/Fink Transients during Summer 2021 Aivazyan et al., 2021, arxiv:astro-ph/2202.09766

- 35 million candidate alerts
- 100 surviving selection cuts
- 6 followed-up by GRANDMA

Extra imaging from professional and amateur astronomers

Case study: Early SN Ia classification

Active Learning Optimal experiment design

Case study: Early SN Ia classification

Leoni et al., arxiv:2111.11438, in press A&A

Case study: Early SN la classification

Fink Early SN Ia candidates reported to TNS from November/2020 - March/2022:

- 4 661 Early SN Ia candidates
- 573 spectroscopically classified
- Contaminants are mostly other SNe
 - 1 LBV

Human-oriented search

Active Anomaly Detection

Plot modified from Chowdhury et al., 2021, SPIE Medical Imaging

Algorithm from Das, S., et al., 2017, in Workshop on Interactive Data Exploration and Analytics (IDEA'17), KDD workshop, arXiv:cs.LG/1708.09441

Case study: Satellite tracks

Problem 1: they hide in plein sight. labels must evolve

Not mega-constellations!

Problem 2: they move fast and may confuse difference image analysis

- Module to identify satellite glints
- 11.5 % all single-frame events
- 30% of those with real-bogus > 0.8
- 140 per night

Karpov and Peloton, 2021, <u>arXiv:astro-ph/2202.05719</u>