Next generation timing method for irregular light curves of AGN

Mehdy Lefkir – 2nd year PhD student

ml556@leicester.ac.uk

Supervisor: Simon Vaughan

LEICESTER XMM-Newton survey legacy for Athena and beyond- 27th Feb. 2024 - Toulouse

Motivations

- unobscured AGN show a strong variability, what is the physical origin of the variability ?

- Study correlations/delays between wavebands to test models of reprocessing and structure of the engine

XMM-Newton observations of NGC 4051

Motivations

- unobscured AGN show a strong variability, what is the physical origin of the variability ?

- Study correlations/delays between wavebands to test models of reprocessing and structure of the engine

- Estimate the shape of power spectrum of several AGN using data from RXTE, Swift, XMM-Newton, ASCA...

Motivations

- unobscured AGN show a strong variability, what is the physical origin of the variability ?

- Study correlations/delays between wavebands to test models of reprocessing and structure of the engine

- Estimate the shape of the power spectrum of several AGN using data from RXTE, Swift, XMM-Newton, ASCA...

We need a method which can cope with:

- irregular sampling, gaps
- uncertainties on measurement
- leakage and aliasing

Gaussian process regression

A nice and easy way to interpolate points **assuming** the joint probability density function is Gaussian. A GP is described by a **mean** function and a **covariance** function (or **autocovariance**)

Gaussian process regression

A nice and easy way to interpolate points **assuming** the joint probability density function is Gaussian. A GP is described by a **mean** function and a **covariance** function (or **autocovariance**)

Gaussian process regression

Rasmussen & Williams, 2006

Gaussian process regression

27/02/2024

Gaussian process regression


```
Gaussian process regression
```


Then, we can find the set of best *hyperparameters* to interpolate the data.

Models for the power spectrum

- Analytical ACVF:
 - Damped random walk $P(f) \propto \frac{1}{1+f^2}$
 - Celerite

 $P(f) \propto \frac{1}{1+f^4}$

CARMA process, Kelly+2014

Foreman-Mackey+2017

Models for the power spectrum

- Analytical ACVF:
 - Damped random walk $P(f) \propto \frac{1}{1+f^2}$
 - Celerite
- $P(f) \propto \frac{1}{1+f^4}$

CARMA process, Kelly+2014

Foreman–Mackey+2017

- No analytical ACVF
 - Single bending power-law: $P(f) = A \left(\frac{f}{f_b}\right)^{-\alpha_1} \frac{1}{1 + \left(\frac{f}{f_b}\right)^{\alpha_2 \alpha_1}}$
 - Double bending power-law

Models for the power spectrum

- Analytical ACVF:
 - Damped random walk $P(f) \propto \frac{1}{1+f^2}$
 - Celerite

CARMA process, Kelly+2014

Foreman-Mackey+2017

- No analytical ACVF
 - Single bending power-law: $P(f) = A \left(\frac{f}{f_b}\right)^{-\alpha_1} \frac{1}{1 + \left(\frac{f}{f_b}\right)^{\alpha_2 \alpha_1}}$

 $P(f) \propto \frac{1}{1+f^4}$

• Double bending power-law

Solution: approximate the power spectrum with a sum of Celerite ACVF - likelihood computation scales as $O(N J^2)$

Solution: approximate the power spectrum with a sum of Celerite ACVF - likelihood computation scales as $O(N J^2)$

Simulation-based calibration

Talts+2018, Säilynoja+2021

Simulation-based calibration

Talts+2018, Säilynoja+2021

Validation: the method can correctly recover power spectrum parameters but the low-frequency slope can be **overestimated** if the bend frequency is too small About the non-linear variability of X-ray light curves and other assumptions

- We assumed Gaussian data

Lognormal process

Uttley+2005

logarithm of the data

- We also assumed that the time series is weakly stationary

- In fact, it is sampled with a Poisson process (not implemented yet!)

Ark 564 observed by XMM-Newton and Swift

Revisiting the power spectrum of Ark 564

Results consistent with the works of McHardy+2007 using only Swift and XMM-Newton observations

Break time scale – Black hole mass diagram – Work in progress!!

Break time scale – Black hole mass diagram – Work in progress!!

Conclusions

- We have a method to estimate the shape of the power spectrum:
 - Works on irregularly sampled time series
 - Validated with simulations
 - Scales on large datasets
 - Accounts for log-normal distribution
- With Julia and Python (JAX) implementations, currently being integrated in Stingray
- Paper describing the method under internal review
- Next steps:
 - Application to a sample of ~50 AGN with RXTE and Swift+ XMM-Newton data
 - Correlations with other wavelengths, reverberation mapping

NGC 4051 – a "low" mass AGN: with Swift and XMM-Newton

- About 5000 points!
- with a sampling period of 150s

Can we see the fast variability?

NGC 4051 – a "low" mass AGN: with Swift and XMM-Newton

NGC 4051 – a "low" mass AGN: with Swift and XMM-Newton

