

EXOD : EPIC XMM Outburst Detector Continuing the search for fast transients in XMM-Newton Observations

Norman Khan, Erwan Quintin, Robbie Webbe, Natalie Webb Maitrayee Gupta, Ines Pastor-Marazuela, Florent Castellani, Damien Wojtowicz

Vincent Foustoul, Axel Schwope, Iris Traulsen, Ada Nebot

XMM-Newton survey legacyFeb. 26-29, 2024for Athena and beyondIRAP, Toulouse

Presentation Overview

- Introduction
 - Motivation for Transient Searches. Ο
 - Previous Works Ο
 - **EXOD** : Timeline Ο
- EXOD Method:
 - **Detection Algorithm** Ο
 - **Crossmatching and Post-Processing** Ο

IRAP, Toulouse

- **Preliminary Results**
- **Future Plans**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004168

MPE-XMM-CCD

Version 0.1

XMM Archive : A goldmine of data

4XMM-DR13 : • 23 years of archival data

- ~15000 observations
- 3.2% sky coverage
- 984k detections
- 8.8 years of PN exposure
- 30.4 years combined exposure
- 4207 Earth orbits
- 65 ± 45 detections per observation
- 27,368,678,750 photons (3.37 x 🌍)

The XMM pipeline only searches for variability in sources with >100 photons.

This corresponds to 1/3 of the detections.

Credit: Iris Traulsen

XMM2ATHENA

XMM-Newton survey legacyFeb. 26-29, 2024for Athena and beyondIRAP, Toulouse

What can we detect within an observation?

Previous Publications | XMM Fast X-ray Transients XMM2ATHENA

- 1. (Pastor-Marazuela et al. 2020): The **EXOD** search for faint transients in XMM-Newton observations: Method and discovery of four extragalactic Type I X-ray bursters
- 2. (Alp et al. 2020): Blasts from the Past: **Supernova Shock Breakouts** in the XMM-Newton Archive. Included BTIs | 0.3 - 2.0 keV | 5 different timescales 100 - 10,000s log binning
- 3. (De Luca et al. 2021): EXtraS

Bayesian blocks + Fixed Bins | 3 E bands | Pulsation Searches | Included BTIs 136 new transients. 900s - 5000s duration

4. (Ruiz et al. 2023): The **STATiX** pipeline for the detection of X-ray transients in three dimensions Bayesian Blocks | Inpainting + Denoising using wavelets

EXOD : Timeline

6

HORIZON * XMM-Newton survey legacy for Athena and beyond

rvey legacy Feb. 26-29, 2024 eyond IRAP, Toulouse

EXOD : Event List Binning

XMM Filtered Event List 0.5-12.0keV: Event Counts Data Cube :

XMM-Newton survey legacyFeb. 26-29, 2024for Athena and beyondIRAP, Toulouse

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004168

EXOD : Data Cubes

XMM2ATHENA

8

EXOD : Bad Time Intervals (BTIs)

Periods of flaring background caused by **protons** with $E < \sim 100$ keV.

Our current approach is to remove all windows with count rates > 0.5 ct/s at high energies (10-12 keV)

We are working on a way to use these BTIs.

XMM2ATHENA

SOHO (2003) λ=195 Å

XMM-Newton survey legacyFeb. 26-29, 2024for Athena and beyondIRAP, Toulouse

This projec Unior program

EXOD : Image Segmentation

EXOD : Crossmatching and Post-Processing XMM2ATHENA

programme under grant agreement No 101004168

EXOD : Current Status

- Key Changes from previous version:
 - Bug Fixes: Centroiding, GTI/BTI handling, omitted event lists.
 - \circ Vectorized Calculations \rightarrow Significant performance improvements.
 - Use of pre-existing libraries: scipy, scikit-image.
 - Use of sky coordinates over detector coordinates (DETX \rightarrow X)
 - Revised variability formula.
 - Improved Source Extraction Method.
 - Machine learning method for light curve classification.

Status:

- **V** : Data Transformations, Variability Calculation, Source Detection, Lightcurve Extraction.
 - S : Source Cross-matching, Lightcurve classification, Detection and Performance statistics.

XMM2ATHE

EXOD : Provisional Results

XMM-Newton survey legacyFeb. 26-29, 2024for Athena and beyondIRAP, Toulouse

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004168

XMM2ATHEN/

EXOD : Provisional Results

14

- Calibration Simulations to test detectability limits 1.
- 2. Merge MOS1 + MOS2 + PN to increase S/N
- Extract spectral Information 3.

Future Work

- Use of the flaring Bad Time Intervals (BTIs) 4.
- Looking at experimental approach to use 5.
- Help constrain the rates of specific events. 6.
- Applicability to Athena data 7.
- 8. Paper coming soon (Khan et al. in prep)

Thanks for Listening!

programme under grant agreement No 101004168

SN 185

XMM2ATHE

WD TDEs & QPEs

Stellar Flares

Type I and II X-ray bursts

EXOD : Source Detection

Source Detection Methods:

- Sliding Cell Detection (SAS: EMLDETECT)
- Voronoi Tessellation and Percolation (VTP) (caio: VTPDETECT)
- Wavelet Detection (caio: WAVDETECT)
- Minimum spanning trees (MSTs)
- Nearest neighbour density (NN)
- And many more...

XMM2Athena Workshop — Feb. 26-29, 2024

HORIZON

XMM2ATHEN/

Baseline quantification — Spatial information

Comparison between expected & observed

Residuals $< 2\sigma$

Any departure: Peak or eclipse

Direct quantification in sigmas

The XMM-Newton survey legacy for Athena and beyond Erwan QUINTIN — Feb. 26-29, 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004168

Old Variability Calculation:

$$\mathcal{V} = \begin{cases} max(C_{\max} - \tilde{C}, |C_{\min} - \tilde{C}|)/\tilde{C} & \text{if } \tilde{C} \neq 0 \\ C_{\max} & \text{if } \tilde{C} = 0 \end{cases}$$

Long Burst

HORIZON

2020

Short Burst

Burst in a bright source

XMM2Athena Workshop — Feb. 26-29, 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004168

What might we Detect?

Transient	Typical Duration	Origin
Transient X-ray Binaries	~seconds to days	BH, NS, WD
X-ray Bursts (Type I & II)	Rise: 1s-10s Decay: 10s-100s	NS, Magnetars
Quasi-Periodic Eruptions (QPEs)	~minutes	BH
Gamma Ray Bursts (GRBs)	~ms to hours	?
Tidal Disruption Events from WDs (WD TDEs)	~minutes	WDs
Soft-Gamma Repeaters (SGRs)	~100ms to ~100s	Magnetars
Blazar flares	~minutes to years	SMBHs
Supernova X-ray flashes	90s to 200s	Hypernovae $M > 30 M_{\odot}$
Stellar Flares & Superflares	1000s to 10000s	Late-Type Stars (spectral-type F–M)
FRB Precursors	?	Magnetars?
Unknown processes	?	?

