Properties and evolution of Active Galactic Nuclei in clusters

Eleftheria Drigga

National Observatory of Athens

E. Koulouridis, A. Gkini + the XXL survey + the Hyper Suprime Cam (HSC) collaboration

XMM-Newton survey legacy for Athena and beyond, 26-29 Feb 2024, Toulouse, France
Motivation

- Studying the evolution of AGN provides insights into the coevolution of supermassive black holes and the galaxies they inhabit.
- As a consequence of hierarchical structure formation, the majority of galaxies eventually fall in clusters. Therefore, clusters are the principal environment of galaxies and they can play a very important role in galaxy evolution.
- Inclusion of AGNs in cosmological simulations is crucial for constructing more realistic models of the universe. However, AGNs are modelled in simulations following only field demographics.
Several studies have shown that massive clusters can effectively suppress the fraction of AGN in cluster galaxies:

- Kauffmann+2004
- Martini+2007: 40% lower
- Koulouridis & Plionis+2010: ~3x lower
- Haines+2012: 40% lower
- Mishra+2020
- Beyoro+2021

Important note: AGN in cluster galaxies are more numerous than in the field. But the fraction of AGN in cluster galaxies is lower than in the field.

Ehlert et al. (2013, 2014): the X-ray AGN fraction in the central regions of 42 of the most massive known clusters is about three times lower than the field value.
Ram pressure stripping by the hot ICM

- In massive clusters we find less AGN in the centre.
- In the central region of galaxy clusters the hot ICM causes the stripping of the gas of cluster galaxies. The result is the quenching of star formation and possibly of the BH accretion, leading to a reduced fraction of AGNs in clusters.

Poggianti+2017 suggested that ram pressure stripping may act as a triggering mechanism for AGN activity in cluster members.

Peluso+2022 confirmed that "jellyfish" galaxies host a significantly higher number of AGN than similar galaxies in the field.

Jellyfish galaxies probably represent a small fraction of the total population of RPS galaxies.
Excess of X-ray point sources in the outskirts of clusters

Ruderman & Ebeling (2005)
$z=0.3-0.7$

Fassbender et al. (2012)
$z=0.9-1.6$

Koulouridis et al. (2014)
$z=0.14-1.0$
Evidence for AGN triggering in the cluster outskirts (1-2 r_{500}, 95% confidence)

Ram pressure stripping towards the cluster centre but less efficient than in massive clusters
High density of accreting super massive black holes in the outskirts of distant galaxy clusters

A significant excess of X-ray point-sources is found in the outskirts of clusters. This can be due to the high density of galaxies that leads to a higher merging rate and thus AGNs, or to the presence of in-falling small groups from filaments where galaxies have already been pre-processed.

Example of an excess of X-ray point-sources in the outskirts of a massive clusters at $z \sim 1$

XXL-Hyper Suprime Cam (HSC-Subaru Telescope) joint project

- 2 x 25 sq. deg.
- 6.9 Ms – 452 XMM-Newton observations (2011-2013)
- Nominal XMM exposure time: 10 ks

- XXL+HSC North → deep photometry
- properties+morphology of Xray AGN in clusters

- Morphology?
- Merging fraction?
- AGN type/
 Obscuration?

XXL North

XMM-XXL South

Figure 11: The location of the HSC-Wide, Deep (D) and Ultradeep (UD) fields on the sky in equatorial coordinates. A variety of external data sets and the Galactic dust extinction are also shown. The shaded region is the region accessible from the CMB polarization experiment, ACTPol, in Chile.
AGN host morphology with HSC in XXL north

HSC i-band

$z=0.59$
Morphology of the host: Merging fraction

Fig. 3: Fraction of merging X-ray AGN in clusters (main sample) in comparison with the fraction of merging cases detected in control samples (iii) and (iv). Error bars indicate the 1σ confidence limits for small numbers of events (Gehrels 1986). A significant excess in the merging fraction is found at the 95% confidence level only in the sample of the X-ray AGN in clusters.
Xray AGN in clusters: Merging examples
the role of infalling groups, ram pressure stripping, cluster mass and dynamical state

E. Koulouridis, A. Gkini, E. Drigga 2024

Bianconi et al. 2021

90% complete spectroscopy of cluster galaxies out to 3xR200 with Hectospec Arizona Cluster Redshift Survey (ACReS)

Haines et al. 2018
Morphological classification
The role of infalling groups & cluster dynamical state

A significant excess of X-ray AGN is found in the outskirts of relaxed clusters, compared both to non-relaxed clusters and to the field.
The X-CLASS survey: A catalogue of 1646 X-ray-selected galaxy clusters up to z~1.5

E. Koulouridis, N. Clerc, T. Sadibekova + the XCLASS collaboration (2021)

THANK YOU!