

Multi-wavelength counterparts of XMM-Newton sources in the DR13 catalogue

Ada Nebot

In collaboration with C. Motch, L. Michel, F-X Pineau and the XMM2ATHENA team

Event Date(s)

XMM-DR13 CATALOGUE

➤ A few numbers

- 983948 detections in the 13243 pointed observations
- O 656997 unique X-ray sources
- Coverage ~3% of the sky
- O Median flux $2.2 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$

Webb et al. 2020, and cats after

XMM-NEWTON SOURCES

- > What is the nature of these more than 650 000 sources?
 - **O**Target of the observation: a well known / studied source
 - O[~]30 to 100 serendipitous sources detected within each observation
 - Dedicated spectroscopic follow-up observations at different galactic latitudes and for X-ray bright / and X-ray faint samples (see the XID program)

Nebot et al. 2013

XMM-NEWTON SOURCES

> But spectroscopy follow-up can be expensive and is not always so easy

OA too large X-ray positional error

OA too large optical / IR density of sources

OMore than one possible counterpart within the positional error is possible

- □Need to prioritize observations at the telescope until the "right counterpart" is found
 - Ranking by X-ray flux ? By optical magnitude? By Fx/Fopt ? Or by proximity of the counterpart? Or a combo?

Event Date(s)

XMM-NEWTON SOURCES

- > But spectroscopy follow-up can be expensive and is not always so easy
 - **O**A too large X-ray positional error
 - **O**A too large optical / IR density of sources
 - OMore than one possible counterpart within the positional error is possible
 - □Need to prioritize observations at the telescope until the "right counterpart" is found
 - Ranking by X-ray flux ? By optical magnitude? By Fx/Fopt ? Or by proximity of the counterpart? Or a combo?

≻A way forward:

- Complement as much as possible with existing photometric surveys
- >Use a probabilistic approach that can give a weight to matches based on local densities
- Inspect photometric data to classify sources and derive source properties

XMM-DR13 CATALOGUE

- ObAS with CDS involvement
- WP2 deals with multi-wavelenth counterparts

The CDS hosts mayor big catalogues. Making it easy to access large catalogues

- We chose a set of catalogues :
 - cover different wavelengths (UV to radio)
 - cover all the locations of the XMM-Newton pointings (not all surveys are all sky)
 - cover different deepths (for Galactic versus extragalactic purposes)

MULTIWAVELENGTH CATALOGUES

> UV (GALEX, XMM-SUSS)

> Optical (SDSS, Skymapper, PanSTARRS, Gaia, APASS)

- ➢ IR (2MASS, AIIWISE)
- Radio (NVSS, FIRST, AKARI)

- Multi-catalogue probabilistic approach (F.X. Pineau et al. 2017)
- Based on positions, positional errors and covered area

- > Hypothesis:
 - **O**No systematic offsets between catalogues, accurate positions
 - ONo moving objects (no proper motions)
 - OAt a given area, source properties are homogeneous
 - **O**No blending

- Multi-catalogue probabilistic approach (F.X. Pineau et al. 2017)
- Based on positions, positional errors and covered area

- > Hypothesis:
 - **O**No systematic offsets between catalogues, accurate positions
 - ONo moving objects (no proper motions)
 - OAt a given area, source properties are homogeneous
 - **O**No blending

> We could perform a match per X-ray observation, but...

OWe need a large number of sources so as to use a probabilistic approach

OWe need to group observations to have enough sources, but...

The local density varies from field to field

The limiting flux varies from field to field

> Applied method to ensure source properties are homogeneous:

OWe calculated the optical density of sources in each XMM observation

OWe calculated the effective area as a function of the X-ray flux

Grouped by similar X-ray flux range and optical source density

CROSSMATCHES

- > ~ 1/3 of XMMDR13 sources are not compatible with any other source
- Multiwavelength SEDs created for about 400 000 unique X-ray sources
- Multiple possible combinations possible (e.g. sol. X alone highest proba Vs X+opt+IR sol.) Radio

■ Only X ■ All ■ OPT+IR ■ OPT ■ IR ■ Radio ■ UV

Frantions should be treated with caution, given the assumptions made and the limiting fluxes of each survey

MULTIWAVELENGTH PROPERTIES

➤ We ingestivate colors

Event Date(s)

MULTIWAVELENGTH PROPERTIES

Compare them with known types of sources

Multi-wavelength photometry can be combined to determine the nature of sources \rightarrow Wednesday morning session

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004168

QSO

STARS

A NEW SERVICE

SMM-NEWTON SURVEY SCIENCE CENTRE		
	XMM SED Finder	
etrieve SE	Ds for either Pointed Observation Sources or Stacked Sources	
	Enter a SRCiD or a sky position followed with an optional search radius. Ex: • 209119902010157 in Obs mode • 3000011010100001 in stacked mode • 4XMM J143706.2+584002 • 4XMM J143706.2+584002 0.5arcmin • 4XMM J143706.2+584002 48arcsec • 219.275869 +58.6672877 Cone search radius is limited to 1 arcmin (6 arcsec by default)	
	Mode: Pointed Observations Stacked	
	102320.2+4405091	
	Response: 1 source(s) found including 1 with SED(s) URL (curl): https://xcatdb.unistra.fr/sedfinder/regular/srcid/205036302010003	

> One service to retrieve SEDs

Query by Source ID
Query by Cone Search
OSED in two formats: FITS & PNG

➤ See L. Michel presentation

https://xcatdb.unistra.fr/sedfinder/

Event Date(s)

SPECTRAL ENERGY DISTRIBUTIONS

> We provide SEDs that can be accessed, downloaded and visualised

AGN : The SED of AGN FBS B 835. With Galex / Apas9 / SDSS12 / Gaia / 2MASS and AllWise fluxes

Event Date(s)

SPECTRAL ENERGY DISTRIBUTIONS

> We provide SEDs that can be accessed, downloaded and visualised

CV: The Cataclysmique Variable QS Vir. The secondary stellar photospheric component dominates the optical / Infrared while the UV (Galex) emission from the accretion disc and from the white dwarf is conspicuous.

Event Date(s)

EXTRAGALACTIC POPULATIONS

> About 20% X-ray sources with SDSS counterpart have a spectroscopic redshift determination

Multi-wavelength photometry can be combined to determine photometric redshifts (classical SED fitting or sophisticated ML techniques)

Event Date(s)

GALACTIC POPULATION

> About 40000 X-ray sources have a good Gaia counterpart with a good distance determination

Multi-wavelength photometry can be combined to determine stellar parameters (classical SED fitting or using sophisticated ML techniques)

Event Date(s)

GALACTIC POPULATION

- Overdensity of sources in and above the main sequence
- Sources above the main sequence have higher X-ray luminosity

See results from eRASS1 (Freund et al 2024) See poster from Thomas Oliveira for YSO in Orion & presentation from Pooja Sharma

Event Date(s)

SUMMARY

- We provide multiwavelength SEDs for X-ray sources
 - Covering from X-ray to radio wavelengths
 - There are more than 25% X-ray source with no counterpart in either survey
 - We have deployed a new service to share these SEDs (via cone search or SRCID)
- Multiwavelength photometry can help us for Galactic and extragalactic studies
 - Determine the nature of the source
 - Derive photometric redshift
 - Derive stellar parameters
- Probabilistic approach is needed to take into account for large errors / high local density of sources, but
 - Probabilities can be difficult to interpret when too many catalogues are involved
 - > Watch out with your hypothesis since they will change your results!
 - ➢ No moving objects? Gaia... No blending? AllWISE...

GALACTIC POPULATION

- Overdensity of sources in and above the main sequence
- Sources above the main sequence have higher X-ray luminosity

Nebot et al in prep.

GALACTIC AND EXTRAGALACTIC POPULATIONS

> We ingestivate colors of X-ray sources with good matches in all surveys

Event Date(s)

> <u>API</u> and scripting mode

ARCHES X-MATCH TOOL 🥂 👼 UNIVERSITE DE STRABBURG			
Anonymous Web form			
Remote directoryX-match script			
Choose file No file chosen	cript examples (match galex/sdss/2mass in a cone, with proba vpe, modify or copy/paste here the xmatch script to be executed:		
	1 ####################################		
Download Remove	esult log		
http://serendib202	3.astro.unistra.fr/ARCHESWebService/index.html		

Event Date(s)

SURVEY CONSTRUCTION

Crossmatch performed with several catalogues

from UV to radio

Event Date(s)

