Towards XMM-Newton's first Enhanced Stacked Catalogue

Adriana Mancini Pires

Center for Lunar and Planetary Sciences, Chinese Academy of Sciences Leibniz Institute for Astrophysics Potsdam (AIP)

Iris Traulsen, Axel Schwope, Jean Ballet, Sudip Chakraborty, David Homan

February 26, 2024

The "classical" approach

emldetect, edetect_stack

- · counts above background from PSF maximum likelihood fitting
- developed for single observations
- observations with overlapping sky areas can be "stacked" (fitted together)
- ✓ state-of-the-art! (Traulsen+19, Traulsen+20) multi-level source characterisation (images → observation → stack) good compromise between depth, accuracy, variability information

The downside Large number of degrees-of-freedom during fitting

Can we do better than "classical" emldetect?

New "enhanced" approach: spectral

XMM2ATHENA: let's find out...

m constancy between epochs while fitting for spectral shape and intensity

What to expect?

- reduction on the number of d.o.f., independently of the size of the stack
- better handling of the detection likelihood controling spurious sources
- ✓ sensitivity boost + spectral parameters directly from source detection

WP4: Enhanced stacked catalogue

- how? re-designed software: emldetect_esc
- testing and validation; two pilot catalogues (D4.3+D4.4), documentation

Two pilot catalogues from 4XMM-DR13(s) pool (13k+)

D4.3: ESC

(2023-03)

- 300 stacks, sizes 2-18
- all cameras active, (e)full-frame
- low background
- minimum 12 arcmin overlap
- random de-selection of small-size stacks (sizes 2, 3)
- emldetect_esc-0.3

✓ 63 990 unique sources

D4.4: Combined ESC

(2023-11)

- D4.3 stacks + 300 "singles"
- all cameras active, (e)full-frame
- low background
- minimum exposure 10 ks
- random selection
- screening (veto on "problematic")
- emldetect_esc-0.4

✓ 95222 = 64247 + 30975

SIXTE simulations of the CDF-S

https://www.sternwarte.uni-erlangen.de/sixte

Ready-to-use SIMPUT catalogues

- \sim 700 point sources, power-law
- 50 extended, APEC
- large-scale diffuse, power-law

Pointing, duration, setup

- XMM LP 2008-2010, PI: Comastri
- 23 EPIC observations with >100 ks

EPIC simulations

10 stacks (size 1–10; 55 simulations)

(stack of N = 6 CDF-S simulations)

SIXTE customisation and corrections

- chip geometry, orientation (XML)
- vignetting; RMF, ARF (FF/thin)
- background model (drawn from blank-sky spectra)
- correction of RAWX, RAWY shifts
- SAS compliance: header keywords, data types
- boresight correction
- detector and sky coords
- improved astrometry

A much input and shortcuts from Angel Ruiz@NOA https://github.com/ruizca/sixtexmm

CDF-S: total detected and recovered SIMPUT sources

SIMPUT fluxes: median 2 \times 10 $^{-15}$ cgs; range: (0.2 - 130) \times 10 $^{-15}$ cgs

EU HORIZON 2020 nº 101004168

Adriana Pires (CLPS/AIP)

Towards XMM-Newton's first ESC, 2024-02-26

XMM2ATHE

CDF-S: flux of recovered SIMPUT sources

emldetect ECF: $N_{\rm H}=3 \times 10^{20} \, {\rm cm}^{-2}, \Gamma=1.7;$ SIMPUT parameters: $N_{\rm H}=4.78(15) \times 10^{21} \, {\rm cm}^{-2}, \Gamma=2.28 \pm 0.06$

EU HORIZON 2020 nº 101004168

Adriana Pires (CLPS/AIP)

CDF-S: detection likelihood, positional errors

D4.3/D4.4: detection likelihood, positional errors

EU HORIZON 2020 nº 101004168

Adriana Pires (CLPS/AIP)

CDF-S: spectral parameters by detection likelihood

SIMPUT parameters: $\textit{N}_{\textrm{H}}=4.78(15)\times10^{21}\,\textrm{cm}^{-2},$ $\Gamma=2.28\pm0.06$

EU HORIZON 2020 nº 101004168

Adriana Pires (CLPS/AIP)

Spectral parameters; "pegging"

SIMPUT parameters: $N_{\rm H} = 4.78(15) \times 10^{21} \, {\rm cm}^{-2}, \, \Gamma = 2.28 \pm 0.06$

EU HORIZON 2020 nº 101004168

Adriana Pires (CLPS/AIP)

Pegging percentage

D4.3/D4.4: about one-third

Quantile	$6 \leq \mathcal{L} < 13$	$13 \leq \mathcal{L} < 30$	$30 \leq \mathcal{L} < 100$	$\mathcal{L} \geq 100$
% pegged (D4.3)	50	37	27	20
% pegged (D4.4)	36	28	22	19

- increases among faint sources
- larger in "complex" fields (eg. bright diffuse background emission, crowded fields)

least molecular cloud MBM16: 15% worst SNR W49B: 74%

CDF-S: about 4%-8%, no trend on stack size

- ✓ ESC performance (mainly based on CDF-S)
 - sensitivity; count rate of faintest non-spurious source
 - reliability and robustness: parameters and errors
 - runtime as a function of stack size
- 🛦 To quantify
 - contamination vs. detection likelihood
 - stacking "saturation"
 - theoretical agreement (statistical framework)
- To understand/address
 - · larger positional errors in spectral mode
 - spectral pegging: workarounds

